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Transition metal hydrides are involved in a variety of catalytic
transformations, and hydrometalation of such species to unsaturated
bonds provides intermediates having metal-carbon or heteroatom
bonds.1 Ruthenium hydride catalysts have played a large role in
these important transformations.2,3 We recently reported that the
regioselective addition of aldehydes to unsaturated ketones leading
to 1,3-diketones can be effectively catalyzed by RuHCl(CO)(PPh3)3

(eq 1).4 If a similarly regioselective hydroacylation takes place in
the reaction between conjugate dienes and aldehydes, �,γ-unsatur-
ated ketones would be formed (eq 2). A decade ago, employing
Ru(cod)(cot)PPh3 as a catalyst, Kondo, Mitsudo and co-workers5

reported cross-condensation of conjugate dienes and aromatic
aldehydes. Albeit pioneering efforts, their system suffers a narrow
scope, including unavailability of aliphatic aldehydes and harsh
reaction conditions with the use of dienes as a solvent. Considering
the importance of this transformation and relying on the potential
of ruthenium hydride complexes, we embarked on a study to explore
an efficient catalytic system on a synthetically useful level. Herein
we report that ruthenium hydride, RuHCl(CO)(PPh3)3,6 can serve
as an efficient catalyst, providing a general method for the synthesis
of of �,γ-unsaturated ketones from 1,3-dienes and aldehydes.

Using the reaction of isoprene (1a) and benzaldehyde (2a) as a
model (Table 1), we surveyed ruthenium hydride catalysts. We were
pleased to find that treatment of a toluene solution of 1a and 2a
with RuHCl(CO)(PPh3)3 (5 mol %) at 90 °C for 24 h gave the
desired cross-addition product, 2,3-dimethyl-1-phenyl-3-buten-1-
one (3a) in 95% yield (entry 3). Other catalysts, such as
RuH2(CO)(PPh3)3 and RuHCl(PPh3)3, gave a smaller amount of
the desired product 3a (entries 4 and 5).

Table 2 illustrates the wide generality and substrate scope of
this transformation. Aryl aldehydes, such as o- and p-tolualdehydes,
gave good yields of �,γ-unsaturated ketones 3b and 3c, respectively
(entries 2 and 3). Similarly, o-, m-, and p-methoxybenzaldehydes
(2d-2f) gave the corresponding ketones 3d-3f in good yields
(entries 4-6). p-Fluorobenzaldehyde (2g) also reacted with 1a to
give 3g (entry 7). The reaction was effective for heteroaromatic
aldehydes such as 2h (entry 8) and aliphatic and R,�-unsaturated
aldehydes 2i, 2j, and 2k (entries 9-11). The reaction between 2g
and myrcene (1b), having one more double bond in the molecule,
gave ketone 3l in 53% yield (entry 12). Since the ruthenium hydride
catalyst employed can affect double bond isomerization,4,6a,b,7 we
tested nonconjugate diene 1c, for which double bond migration
would be followed by a cross-coupling reaction. Gratifyingly, 3m

was obtained in good yield via the envisaged alkene-isomerization/
dehydrogenative carbonyl addition sequence (entry 13). In the
reaction of trans-1,3-pentadiene (1d(E)) with 2a, R,�-unsaturated
ketone 3n was obtained as an E/Z mixture with a ratio of 27/73
(entry 14). Our RuH catalyst system also allows cis isomer 1d(Z)
to react with 2a to give 3n (entry 15).8 The reaction of 4-methyl-
1,3-pentadiene (1e) with 2a gave ketone 3o in 80% yield as a single
product (entry 16). In the case of dialdehyde 2l, cascade-type cross-
condensation took place to give lactone 3p albeit in moderate yield.

A possible mechanism for the present ruthenium hydride
catalyzed reaction is illustrated by the reaction of 1a with 2a in
Scheme 1. Addition of a ruthenium hydride to 1a gives π-allyl-
ruthenium complex A, as confirmed by 1H NMR spectroscopy.9,10

No evidence for regioisomeric B was found in the NMR study,
which may be due to steric considerations. The resulting complex
A would then undergo reaction with aldehyde 2a via a six-
membered transition state so as to place the bulky Ru-portion of
the catalyst at the less hindered methylene carbon. The resulting

Table 1. Survey of RuH Catalystsa

entry 1a (equiv) catalyst (mol%) yield of 3a (%)b

1 2 RuHCl(CO)(PPh3)3 (5) 65
2 2 RuHCl(CO)(PPh3)3 (10) 92
3 4 RuHCl(CO)(PPh3)3 (5) 95
4 4 RuH2(CO)(PPh3)3 (5) 11
5 4 RuHCl(PPh3)3 (5) 3

a Conditions: 1a (2 or 4 mmol), 2a (1 mmol), Ru catalyst (5 or 10
mol%), toluene (6 mL). Reaction was carried out in a screw capped test
tube. b GC yields using hexadecane as an internal standard.

Scheme 1. Potential Mechanism
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complex C would then undergo a �-hydride elimination to give 3a
with liberation of ruthenium hydride. The formation of products
3n and 3o in the case of 1,3-pentadiene (1d (E,Z)) and 4-methyl-
1,3-pentadiene (1e) (Table 2, entries 14, 15, and 16) may be
rationalized by a similar pathway including isomerization of initially

formed π-allylruthenium intermediate D to more stable Ru-complex
E.11 In a preceding study,5 however, Kondo et al. proposed a
mechanism involving oxidative addition of benzaldehyde to Ru to
form a benzoyl(hydride)ruthenium complex,12 which undergoes the
consecutive hydroruthenation of dienes and reductive elimination.
To determine whether their mechanism is operative in our RuH
system, we carried out a crossover experiment using a mixture of
PhCDO (2a-d) and p-FC6H4CHO (2g) with isoprene 1a. As the
result, we observed nearly equal deuterium scrambling between
products 3a-d and 3g-d. This result demonstrated that the hydrogen
and acyl units that add to the diene do come from different
molecules of aldehydes.13

In summary, we have developed an efficient cross-addition
reaction catalyzed by RuHCl(CO)(PPh3)3, which provides entry to
a wide variety of �,γ-unsaturated ketones starting from the
corresponding aldehydes and dienes. The detailed mechanism of
this reaction as well as further extension of this chemistry is
currently under investigation in this laboratory.
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Table 2. Synthesis of �,γ-Unsaturated Ketones by a Ru-H
Catalyzed Cross-Coupling Reaction of Dienes with Aldehydesa

a Conditions: 1 (4 equiv, 2 equiv for entries 4, 5, 6, 12, and 13), 2
(0.5 or 1 mmol), RuHCl(CO)(PPh3)3 (5 mol%), toluene (3 or 6 mL), 90
°C, 24 h. b Isolated yield by chromatography on SiO2. c With 20 mol%
of catalyst. d With 10 mol% catalyst. e NMR yield. f With 5 equiv of 1a.
Isobenzofuranone was obtained in 32% yield.
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